74,824 research outputs found

    On a class of reductions of Manakov-Santini hierarchy connected with the interpolating system

    Full text link
    Using Lax-Sato formulation of Manakov-Santini hierarchy, we introduce a class of reductions, such that zero order reduction of this class corresponds to dKP hierarchy, and the first order reduction gives the hierarchy associated with the interpolating system introduced by Dunajski. We present Lax-Sato form of reduced hierarchy for the interpolating system and also for the reduction of arbitrary order. Similar to dKP hierarchy, Lax-Sato equations for LL (Lax fuction) due to the reduction split from Lax-Sato equations for MM (Orlov function), and the reduced hierarchy for arbitrary order of reduction is defined by Lax-Sato equations for LL only. Characterization of the class of reductions in terms of the dressing data is given. We also consider a waterbag reduction of the interpolating system hierarchy, which defines (1+1)-dimensional systems of hydrodynamic type.Comment: 15 pages, revised and extended, characterization of the class of reductions in terms of the dressing data is give

    Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity

    Full text link
    We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long range order and a homogeneous state with coexistence of superfluidity and antiferromagnetism. We show that the energy density of a hole ehole(x)e_{hole}(x) has a minimum at doping x=xcx=x_c that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is however found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest neighbor hopping {\it t-J} model

    Oral cancer secretome: Identification of cancer-associated proteins

    Get PDF
    This study aims to identify cancer-associated proteins in the secretome of oral cancer cell lines. We have successfully established four primary cell cultures of normal cells with a limited lifespan without human telomerase reverse transcriptase (hTERT) immortalization. The secretome of these primary cell cultures were compared with that of oral cancer cell lines using 2DE. Thirty five protein spots were found to have changed in abundance. Unambiguous identification of these proteins was achieved by MALDI TOF/TOF. In silico analysis predicted that 24 of these proteins were secreted via classical or nonclassical mechanisms. The mRNA expression of six genes was found to correlate with the corresponding protein abundance. Ingenuity Pathway Analysis (IPA) core analysis revealed that the identified proteins were relevant in, and related to, cancer development with likely involvements in tumor growth, metastasis, hyperproliferation, tumorigenesis, neoplasia, hyperplasia, and cell transformation. In conclusion, we have demonstrated that a comparative study of the secretome of cancer versus normal cell lines can be used to identify cancer-associated proteins.Article Link: http://onlinelibrary.wiley.com/doi/10.1002/elps.201300126/abstrac

    Estimating Form Factors of Bsβ†’Ds(βˆ—)B_s\rightarrow D_s^{(*)} and their Applications to Semi-leptonic and Non-leptonic Decays

    Full text link
    Bs0β†’Dsβˆ’B_s^0\rightarrow D_s^{-} and Bs0β†’Dsβˆ—βˆ’B_s^0\rightarrow D_s^{*-} weak transition form factors are estimated for the whole physical region with a method based on an instantaneous approximated Mandelstam formulation of transition matrix elements and the instantaneous Bethe-Salpeter equation. We apply the estimated form factors to branching ratios, CP asymmetries and polarization fractions of non-leptonic decays within the factorization approximation. And we study the non-factorizable effects and annihilation contributions with the perturbative QCD approach. The branching ratios of semi-leptonic Bs0β†’Ds(βˆ—)βˆ’l+Ξ½lB_s^0\rightarrow D_s^{(*)-}l^+\nu_l decays are also evaluated. We show that the calculated decay rates agree well with the available experimental data. The longitudinal polarization fraction of Bsβ†’Dsβˆ—V(A)B_s\rightarrow D_s^*V(A) decays are ∼0.8\sim0.8 when V(A)V(A) denotes a light meson, and are ∼0.5\sim0.5 when V(A)V(A) denotes a DqD_q (q=d,sq=d,s) meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also changed

    The magnetic dipole transitions in the (cbˉ)(c\bar{b}) binding system

    Full text link
    The magnetic dipole transitions between the vector mesons Bcβˆ—B_c^* and their relevant pseudoscalar mesons BcB_c (BcB_c, Bcβˆ—B_c^*, Bc(2S)B_c(2S), Bcβˆ—(2S)B_c^*(2S), Bc(3S)B_c(3S) and Bcβˆ—(3S)B_c^*(3S) etc, the binding states of (cbΛ‰)(c\bar{b}) system) of the BcB_c family are interesting. To see the `hyperfine' splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (cbΛ‰)(c\bar{b}) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson Bcβˆ—B_c^* mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons BcB_c accordingly. Considering the possibility to observe the vector mesons via the transitions at Z0Z^0 factory and the potentially usages of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. precisely to calculate the rates for the transitions such as decays Bcβˆ—β†’BcΞ³B_c^*\to B_c\gamma and Bcβˆ—β†’Bce+eβˆ’B_c^*\to B_c e^+e^-, and particularly work in the Behte-Salpeter framework. In the estimate, as a typical example, we carefully investigate the dependance of the rate Ξ“(Bcβˆ—β†’BcΞ³)\Gamma(B_c^*\to B_c\gamma) on the mass difference Ξ”M=MBcβˆ—βˆ’MBc\Delta M=M_{B_c^*}-M_{B_c} as well.Comment: 10 pages, 2 figures, 1 tabl
    • …
    corecore